Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells
نویسندگان
چکیده
Currently there are limited treatment options for corneal blindness caused by dysfunctional corneal endothelial cells. The primary treatment involves transplantation of healthy donor human corneal endothelial cells, but a global shortage of donor corneas necessitates other options. Conventional tissue approaches for corneal endothelial cells are based on EDTA-trypsin treatment and run the risk of irreversible endothelial mesenchymal transition by activating canonical Wingless-related integration site (Wnt) and TGF-β signaling. Herein, we demonstrate an alternative strategy that avoids disruption of cell-cell junctions and instead activates Ras homologue gene family A (RhoA)-Rho-associated protein kinase (ROCK)-canonical bone morphogenic protein signaling to reprogram adult human corneal endothelial cells to neural crest-like progenitors via activation of the miR302b-Oct4-Sox2-Nanog network. This approach allowed us to engineer eight human corneal endothelial monolayers of transplantable size, with a normal density and phenotype from one corneoscleral rim. Given that a similar signal network also exists in the retinal pigment epithelium, this partial reprogramming approach may have widespread relevance and potential for treating degenerative diseases.
منابع مشابه
Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway.
PURPOSE To determine the signaling pathway involved in expanding contact-inhibited human corneal endothelial cells (HCECs) using p120 and Kaiso small interfering RNAs (siRNAs). METHODS Expansion of HCEC monolayers on collagen IV in SHEM using p120 siRNA was optimized regarding various dosage, frequency, and starting date before being added Kaiso siRNA or various inhibitors of Rho, ROCK, NFκB,...
متن کاملSenescence Mediated by p16INK4a Impedes Reprogramming of Human Corneal Endothelial Cells into Neural Crest Progenitors
Human corneal endothelial cells (HCECs) have limited proliferative capacity due to "contact-inhibition" at G1 phase. Such contact-inhibition can be delayed from Day 21 to Day 42 by switching EGF-containing SHEM to LIF/bFGF-containing MESCM through transient activation of LIF-JAK1-STAT3 signaling that delays eventual nuclear translocation of p16INK4a. Using the latter system, we have reported a ...
متن کاملNuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.
Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by b...
متن کاملRutin Prevents High Glucose-Induced Renal Glomerular Endothelial Hyperpermeability by Inhibiting the ROS/Rhoa/ROCK Signaling Pathway.
Diabetic nephropathy is a progressive kidney disease caused by damage to the capillaries in the glomeruli. Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy. Hyperglycemia-induced endothelial hyperpermeability is crucial to diabetic nephropathy. Rutin has beneficial effects on diabetic nephropathy, but the exact me...
متن کاملBone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension.
Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned sub...
متن کامل